[go: up one dir, main page]

login
A079222
Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the six-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
8
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 0, 1, 38, 42, 28, 2, 0, 1, 111, 124, 90, 0, 0, 6, 1, 332, 379, 285, 5, 0, 27, 0, 1, 1029, 1178, 914, 0, 0, 110, 0, 0, 1, 3232, 3742, 2955, 14, 1, 429, 0, 0, 0, 1, 10374, 12024, 9666, 0, 0, 1614, 0, 0, 0, 0, 1, 33679, 39200, 31853, 42, 0
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, i.e. T(n,d) includes also the counts A079218(n,d) and A079219(n,d).
MAPLE
[seq(A079222(n), n=0..119)]; A079222 := n -> PFixedByA057511(A003056(n)+1, 6, A002262(n)+1);
CROSSREFS
The row sums equal to the left edge shifted left href="/A079227" title="Number of Catalan objects fixed by six-fold application of the Catalan bijections A057511/A057512 (Deep rotation of general ...">A079227 = sixth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079221 and A003056 & A002262.
Sequence in context: A190215 A190252 A141751 * A033184 A171567 A110488
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved