[go: up one dir, main page]

login
A078012
Expansion of (1 - x) / (1 - x - x^3) in powers of x.
36
1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
OFFSET
0,7
COMMENTS
Number of compositions of n into parts >= 3. - Milan Janjic, Jun 28 2010
From Adi Dani, May 22 2011: (Start)
Number of compositions of number n into parts of the form 3*k+1, k >= 0.
For example, a(10)=19 and all compositions of 10 in parts 1,4,7 or 10 are
(1,1,1,1,1,1,1,1,1,1), (1,1,1,1,1,1,4), (1,1,1,1,1,4,1), (1,1,1,1,4,1,1), (1,1,1,4,1,1,1), (1,1,4,1,1,1,1), (1,4,1,1,1,1,1), (4,1,1,1,1,1,1), (1,1,4,4), (1,4,1,4), (1,4,4,1), (4,1,1,4),(4,1,4,1), (4,4,1,1), (1,1,1,7), (1,1,7,1), (1,7,1,1), (7,1,1,1), (10). (End)
a(n+1) is for n >= 0 the number of 00's in the Narayana word NW(n); equivalently the number of two neighboring 0's at level n of the Narayana tree. See A257234. This implies that if a(0) is put to 0 then a(n) is the number of -1's in the Narayana word NW(n), and also at level n of the Narayana tree. - Wolfdieter Lang, Apr 24 2015
REFERENCES
Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 331ff.
LINKS
Christian Ballot, On Functions Expressible as Words on a Pair of Beatty Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.2.
C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f_n.]
Taras Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae, Vol. 49 (2018), 75-84.
Bahar Kuloğlu, Engin Özkan, and Marin Marin, On the period of Pell-Narayana sequence in some groups, arXiv:2305.04786 [math.CO], 2023.
J. D. Opdyke, A unified approach to algorithms generating unrestricted.., J. Math. Model. Algor. 9 (2010) 53-97.
Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.
FORMULA
a(n) = Sum_{i=0..(n-3)/3} binomial(n-3-2*i, i), n >= 1, a(0) = 1.
From Michael Somos, May 03 2011: (Start)
Euler transform of A065417.
G.f.: (1 - x) / (1 - x - x^3).
a(n) = a(n-1) + a(n-3).
a(-n) = A077961(n). a(n+3) = A000930(n).
a(n+5) = A068921(n). (End)
a(n+1) = A013979(n-3) + A135851(n) + A107458(n), n >= 3.
a(n) = a(n-1) + a(n-3) for n >= 4. - Jaroslav Krizek, May 07 2011
G.f.: 1/(1 - Sum_{k>=3} x^k). - Joerg Arndt, Aug 13 2012
G.f.: Q(0)*(1-x)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
0 = -1 + a(n)*(a(n)*(a(n) + a(n+2)) + a(n+1)*(a(n+1) - 3*a(n+2))) + a(n+1)*(+a(n+1)*(+a(n+1) + a(n+2)) + a(n+2)*(-2*a(n+2))) + a(n+2)^3 for all n in Z. - Michael Somos, Feb 03 2018
EXAMPLE
G.f. = 1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 9*x^10 + 13*x^11 + ...
MAPLE
A078012 := proc(n): if n=0 then 1 else add(binomial(n-3-2*i, i), i=0..(n-3)/3) fi: end: seq(A078012(n), n=0..46); # Johannes W. Meijer, Aug 11 2011
MATHEMATICA
CoefficientList[ Series[(1-x)/(1-x-x^3), {x, 0, 50}], x] (* Robert G. Wilson v, May 25 2011 *)
LinearRecurrence[{1, 0, 1}, {1, 0, 0}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
a[ n_]:= If[ n >= 0, SeriesCoefficient[ (1-x)/(1-x-x^3), {x, 0, n}], SeriesCoefficient[1/(1+x^2-x^3), {x, 0, -n}]]; (* Michael Somos, Feb 03 2018 *)
PROG
(PARI) {a(n) = if( n<0, n = -n; polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, May 03 2011 */
(Haskell)
a078012 n = a078012_list !! n
a078012_list = 1 : 0 : 0 : 1 : zipWith (+) a078012_list
(zipWith (+) (tail a078012_list) (drop 2 a078012_list))
-- Reinhard Zumkeller, Mar 23 2012
(Magma) I:=[1, 0, 0]; [n le 3 select I[n] else Self(n-1) + Self(n-3): n in [1..50]]; // G. C. Greubel, Jan 19 2018
(Sage) ((1-x)/(1-x-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 28 2019
(GAP) a:=[1, 0, 0];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # G. C. Greubel, Jun 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002, Mar 08 2008
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved