[go: up one dir, main page]

login
A076834
Number of inequivalent projective binary linear [n,k] codes of any dimension k <= n. Also the number of simple binary matroids on n points.
2
1, 1, 2, 3, 5, 10, 20, 42, 102, 276, 857, 3233, 15113, 91717, 751479
OFFSET
1,3
COMMENTS
A code is projective if all columns are distinct and nonzero.
REFERENCES
H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.
D. Slepian, Some further theory of group codes. Bell System Tech. J. 39 1960 1219-1252.
M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994
CROSSREFS
Row sums of A076833. A diagonal of A091008.
Sequence in context: A257113 A367216 A352945 * A023170 A125312 A300550
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Nov 21 2002
EXTENSIONS
More terms from Marcel Wild, Nov 26 2002
STATUS
approved