# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a076834
Showing 1-1 of 1
%I A076834 #7 Mar 30 2012 16:49:31
%S A076834 1,1,2,3,5,10,20,42,102,276,857,3233,15113,91717,751479
%N A076834 Number of inequivalent projective binary linear [n,k] codes of any dimension k <= n. Also the number of simple binary matroids on n points.
%C A076834 A code is projective if all columns are distinct and nonzero.
%D A076834 H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.
%D A076834 D. Slepian, Some further theory of group codes. Bell System Tech. J. 39 1960 1219-1252.
%D A076834 M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994
%H A076834 H. Fripertinger, Isometry Classes of Codes
%H A076834 Index entries for sequences related to binary linear codes
%Y A076834 Row sums of A076833. A diagonal of A091008.
%K A076834 nonn,more
%O A076834 1,3
%A A076834 _N. J. A. Sloane_, Nov 21 2002
%E A076834 More terms from Marcel Wild, Nov 26 2002
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE