OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..659
FORMULA
Special values of the hypergeometric function 4F3, in Maple notation: a(n)= hypergeom([n+1, n+1, -n, -n], [1, 2, 2], 1), n=0, 1...
Recurrence: (n+1)^3*(3*n^2-6*n+2)*a(n) = (2*n-1)*(51*n^4 - 102*n^3 + 19*n^2 + 32*n - 14)*a(n-1) - (3*n^2-1)*(n-2)^3*a(n-2). - Vaclav Kotesovec, Jun 29 2013
a(n) ~ sqrt(48+34*sqrt(2))*(17+12*sqrt(2))^n/(4*n^(7/2)*Pi^(3/2)). - Vaclav Kotesovec, Jun 29 2013
MAPLE
sq := (x^2-34*x+1)^(1/2);
f := 54*(sq+x-1)^2/(sq+x+7)^3;
H1 := hypergeom([1/3, -1/3], [1], f);
H2 := hypergeom([1/3, 2/3], [1], f);
ogf := (2*sq-6*x+6)*H1^2/(9*x) + (4*x-8-2*sq)*H1*H2/(9*x) + (sq^3-5*x^3-105*x^2+129*x+13)*H2^2/(36*x*(x+1)^2) - (x+1)/(6*x);
series(ogf, x=0, 20); # Mark van Hoeij, Apr 04 2013
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n, k]^2 * Binomial[n + k, k + 1]^2, {k, 0, n}]/n^2, {n, 25}]] (* T. D. Noe, Apr 05 2013 *)
Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1, 2, 2}, 1], {n, 0, 18}] (* Jean-François Alcover, Nov 06 2016 *)
PROG
(PARI) a(n)=my(t=n); if(!n, return(1)); sum(k=1, n, t*=(n-k+1)*(n+k)/k/(k+1); t^2)/n^2+1 \\ Charles R Greathouse IV, Nov 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Aug 26 2002
EXTENSIONS
An initial 1 deleted by Mark van Hoeij, Apr 04 2013
STATUS
approved