[go: up one dir, main page]

login
A074632
Numbers k such that the sum of 2nd, 3rd, 4th and 5th powers of divisors of k are divisible by sum of divisors of k.
1
1, 20, 64, 500, 729, 1024, 1280, 4096, 4352, 14580, 15625, 32000, 39168, 46656, 47360, 59049, 65536, 117649, 144640, 161024, 262144, 312500, 364500, 509184, 531441, 746496, 796797, 933120, 1000000, 1180980, 1184000, 1449216, 1771561
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..269 (terms up to 10^10)
EXAMPLE
For k = 20: sigma(k) = 42 ,sigma_2(k) = 546 = 13 * 42, sigma_3(k) = 9198 = 219 * 42, sigma_4(k) = 170898 = 4069 * 42, sigma_5(k) = 3304182 = 78671 * 42.
MATHEMATICA
Select[Range[2000000], And@@Divisible[DivisorSigma[Range[2, 5], #], DivisorSigma[ 1, #]]&] (* Harvey P. Dale, Jan 01 2012 *)
PROG
(PARI) is(k) = {my(f = factor(k), s = sigma(f)); for(k = 2, 5, if(sigma(f, k) % s, return(0))); 1; } \\ Amiram Eldar, Jun 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 27 2002
STATUS
approved