[go: up one dir, main page]

login
A063024
Reversion of y - y^2 - y^3 - y^4 - y^5.
0
0, 1, 1, 3, 11, 45, 196, 894, 4215, 20377, 100463, 503191, 2553291, 13097469, 67808104, 353851124, 1859313324, 9828998946, 52237988523, 278952216129, 1495976545546, 8053571710250, 43507491045810, 235784617161780
OFFSET
0,4
FORMULA
a(n)=sum(k=1..n-1, (sum(j=0..k, binomial(k,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1))))*binomial(n+k-1,n-1)/n, n>1. a(1)=1. [Vladimir Kruchinin, May 10 2011]
MATHEMATICA
CoefficientList[InverseSeries[Series[y - y^2 - y^3 - y^4 - y^5, {y, 0, 30}], x], x]
PROG
(Maxima)
a(n):=if n<2 then n else sum((sum(binomial(k, j)*sum(binomial(j, i-j)*binomial(k-j, n-3*(k-j)-i-1), i, j, n-k+j-1), j, 0, k))*binomial(n+k-1, n-1), k, 1, n-1)/n; /* Vladimir Kruchinin, May 10 2011 */
(PARI)
x='x+O('x^66);
gf=serreverse(x-sum(j=2, 6, x^j));
Vec(gf)
/* Joerg Arndt, May 12 2011 */
CROSSREFS
Sequence in context: A049166 A049172 A049155 * A217887 A151129 A151130
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Jul 05 2001
STATUS
approved