[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062389
a(n) = floor( (2n-1)*Pi/2 ).
10
1, 4, 7, 10, 14, 17, 20, 23, 26, 29, 32, 36, 39, 42, 45, 48, 51, 54, 58, 61, 64, 67, 70, 73, 76, 80, 83, 86, 89, 92, 95, 98, 102, 105, 108, 111, 114, 117, 120, 124, 127, 130, 133, 136, 139, 142, 146, 149, 152, 155, 158, 161, 164, 168, 171, 174, 177, 180, 183, 186
OFFSET
1,2
COMMENTS
In general, the complement of a nonhomogenous Beatty sequence [n*r + h] is given by [n*s + h - h*s], where s = r/(r - 1). As an example, the complement of this sequence is A246046. This sequence gives the positive integers k satisfying tan(k) > tan(k + 1), and A246046 gives those satisfying tan(k) < tan(k + 1). - Clark Kimberling, Aug 24 2014
Excluding a(1), a(n) = positive floored solutions to tan(x) = x. - Derek Orr, May 30 2015
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 223.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
MAPLE
seq(floor((2*n-1)*Pi/2), n=1..1000); # Robert Israel, Jun 01 2015
MATHEMATICA
r = Pi; s = Pi/(Pi - 1); h = -Pi/2; z = 120;
u = Table[Floor[n*r + h], {n, 1, z}] (* A062389 *)
v = Table[Floor[n*s + h - h*s], {n, 1, z}] (* A246046 *)
(* Clark Kimberling, Aug 24 2014 *)
PROG
(PARI) j=[]; for(n=1, 150, j=concat(j, floor(1/2*(2*n-1)*Pi))); j
(PARI) { default(realprecision, 50); for (n=1, 1000, write("b062389.txt", n, " ", (2*n - 1)*Pi\2); ) } \\ Harry J. Smith, Aug 06 2009
CROSSREFS
Cf. A246046.
Sequence in context: A125620 A310687 A310688 * A191402 A080600 A198266
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Jul 08 2001
STATUS
approved