OFFSET
0,3
COMMENTS
The old definition was "Number of sums less than or equal to n of sequences of consecutive positive integers (including sequences of length 1)."
In other words, a(n) is also the total number of partitions of all positive integers <= n into consecutive parts, n >= 1. - Omar E. Pol, Dec 03 2020
Starting with 1 = row sums of triangle A168508. - Gary W. Adamson, Nov 27 2009
The subsequence of primes in this sequence begins, through a(100): 2, 5, 7, 11, 17, 19, 23, 29, 37, 43, 47, 73, 79, 173, 181, 223, 227, 229, 233, 263. - Jonathan Vos Post, Feb 13 2010
Apart from the initial zero, a(n) is also the total number of subparts of the symmetric representations of sigma of all positive integers <= n. Hence a(n) is also the total number of subparts in the terraces of the stepped pyramid with n levels described in A245092. For more information see A279387 and A237593. - Omar E. Pol, Dec 17 2016
a(n) is also the total number of partitions of all positive integers <= n into an odd number of equal parts. - Omar E. Pol, May 14 2017
Zero together with the row sums of A235791. - Omar E. Pol, Dec 18 2020
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{i=1..n} A001227(i).
a(n) = a(n-1) + A001227(n).
a(n) = n + floor(n/3) + floor(n/5) + floor(n/7) + floor(n/9) + ...
a(n) = Sum_{i=1..ceiling(n/2)} A000005(n-i+1). - Wesley Ivan Hurt, Sep 30 2013
a(n) = Sum_{i=floor((n+2)/2)..n} A000005(i). - N. J. A. Sloane, Dec 06 2020, modified by Xiaohan Zhang, Nov 07 2022
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016
a(n) ~ n*(log(2*n) + 2*gamma - 1) / 2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
EXAMPLE
E.g., for a(7), we consider the odd divisors of 1,2,3,4,5,6,7, which gives 1,1,2,1,2,2,2 = 11. - Jon Perry, Mar 22 2004
Example illustrating the old definition: a(7) = 11 since 1, 2, 3, 4, 5, 6, 7, 1+2, 2+3, 3+4, 1+2+3 are all 7 or less.
From Omar E. Pol, Dec 02 2020: (Start)
Illustration of initial terms:
Diagram
n a(n)
0 0 _|
1 1 _|1|
2 2 _|1 _|
3 4 _|1 |1|
4 5 _|1 _| |
5 7 _|1 |1 _|
6 9 _|1 _| |1|
7 11 _|1 |1 | |
8 12 _|1 _| _| |
9 15 _|1 |1 |1 _|
10 17 _|1 _| | |1|
11 19 _|1 |1 _| | |
12 21 |1 | |1 | |
...
a(n) is also the total number of horizontal line segments in the first n levels of the diagram. For n = 5 there are seven horizontal line segments, so a(5) = 7. Cf. A237048, A286001. (End)
From Omar E. Pol, Dec 19 2020: (Start)
a(n) is also the number of regions in the diagram of the symmetries of sigma after n stages, including the subparts, as shown below (Cf. A279387):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 0 1 2 4 5 7 9
(End)
MAPLE
A060831 := proc(n)
add(numtheory[tau](n-i+1), i=1..ceil(n/2)) ;
end proc:
seq(A060831(n), n=0..100) ; # Wesley Ivan Hurt, Oct 02 2013
MATHEMATICA
f[n_] := Sum[ -(-1^k)Floor[n/(2k - 1)], {k, n}]; Table[ f[n], {n, 0, 65}] (* Robert G. Wilson v, Jun 16 2006 *)
Accumulate[Table[Count[Divisors[n], _?OddQ], {n, 0, 70}]] (* Harvey P. Dale, Nov 26 2023 *)
PROG
(PARI) a(n)=local(c); c=0; for(i=1, n, c+=sumdiv(i, X, X%2)); c
(PARI) for (n=0, 1000, s=n; d=3; while (n>=d, s+=n\d; d+=2); write("b060831.txt", n, " ", s); ) \\ Harry J. Smith, Jul 12 2009
(PARI) a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2 \\ Charles R Greathouse IV, Jun 18 2015
(Python)
def A060831(n): return n+sum(n//i for i in range(3, n+1, 2)) # Chai Wah Wu, Jul 16 2022
(Python)
from math import isqrt
def A060831(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1, s+1))-sum(m//k for k in range(1, t+1))<<1) # Chai Wah Wu, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 01 2001
EXTENSIONS
Definition simplified by N. J. A. Sloane, Dec 05 2020
STATUS
approved