[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of partitions of 2^n.
14

%I #15 Feb 22 2017 18:46:34

%S 1,2,5,22,231,8349,1741630,4351078600,365749566870782,

%T 4453575699570940947378,61847822068260244309086870983975,

%U 18116048323611252751541173214616030020513022685,6927233917602120527467409170319882882996950147283323368445315320451

%N a(n) = number of partitions of 2^n.

%H Alois P. Heinz, <a href="/A068413/b068413.txt">Table of n, a(n) for n = 0..19</a>

%H Henry Bottomley, <a href="http://www.se16.info/js/partitions.htm">Partition calculators using java applets</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = A000041(A000079(n)).

%F a(n) ~ exp(Pi*sqrt(2^(n+1)/3))/(sqrt(3)*2^(n+2)). - _Ilya Gutkovskiy_, Jan 13 2017

%e a(2)=5 since there are 5 partitions of 2^2=4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1+1.

%t Table[ PartitionsP[2^n], {n, 0, 12}]

%Y Cf. A000041, A000079, A018819, A067735.

%K nonn

%O 0,2

%A _Henry Bottomley_, Mar 03 2002