[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068413
a(n) = number of partitions of 2^n.
14
1, 2, 5, 22, 231, 8349, 1741630, 4351078600, 365749566870782, 4453575699570940947378, 61847822068260244309086870983975, 18116048323611252751541173214616030020513022685, 6927233917602120527467409170319882882996950147283323368445315320451
OFFSET
0,2
FORMULA
a(n) = A000041(A000079(n)).
a(n) ~ exp(Pi*sqrt(2^(n+1)/3))/(sqrt(3)*2^(n+2)). - Ilya Gutkovskiy, Jan 13 2017
EXAMPLE
a(2)=5 since there are 5 partitions of 2^2=4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1+1.
MATHEMATICA
Table[ PartitionsP[2^n], {n, 0, 12}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Mar 03 2002
STATUS
approved