[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068237
Numerators of arithmetic derivative of 1/n: -A003415(n)/n^2.
3
0, -1, -1, -1, -1, -5, -1, -3, -2, -7, -1, -1, -1, -9, -8, -1, -1, -7, -1, -3, -10, -13, -1, -11, -2, -15, -1, -2, -1, -31, -1, -5, -14, -19, -12, -5, -1, -21, -16, -17, -1, -41, -1, -3, -13, -25, -1, -7, -2, -9, -20, -7, -1, -1, -16, -23, -22, -31, -1, -23
OFFSET
1,6
LINKS
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= n-> numer(-d(n)/n^2):
seq(a(n), n=1..80); # Alois P. Heinz, Jun 07 2015
MATHEMATICA
d[n_] := If[n < 2, 0, n Sum[f[[2]]/f[[1]], {f, FactorInteger[n]}]];
a[n_] := Numerator[-d[n]/n^2];
Array[a, 80] (* Jean-François Alcover, Mar 12 2019 *)
PROG
(Python)
from fractions import Fraction
from sympy import factorint
def A068237(n): return -Fraction(sum((Fraction(e, p) for p, e in factorint(n).items())), n).numerator # Chai Wah Wu, Nov 03 2022
CROSSREFS
Cf. A003415, A068238 (denominators).
Sequence in context: A338096 A215010 A136744 * A373363 A083345 A087262
KEYWORD
sign,frac,look
AUTHOR
Reinhard Zumkeller, Feb 23 2002
STATUS
approved