[go: up one dir, main page]

login
A067636
Row 1 of table in A067640.
1
2, 20, 210, 2352, 27720, 339768, 4294290, 55621280, 734959368, 9873696560, 134510127752, 1854385377600, 25828939188000, 362995937665200, 5141806953167250, 73343003232628800, 1052697272275341000, 15194039267330154000, 220410039466873456200
OFFSET
0,1
LINKS
J. L. Jacobsen and P. Zinn-Justin, A Transfer Matrix approach to the Enumeration of Knots, arXiv:math-ph/0102015, 2001-2002.
FORMULA
a(n) = (2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!). [adapted to offset 0 by Georg Fischer, May 29 2021]
D-finite with recurrence: a(0) = 2, n*(n+2)*(n+3)*a(n) - 4*(n+1)*(2*n+1)*(2*n+3)*a(n-1) = 0 for n >= 1. - Georg Fischer, May 29 2021
a(n) ~ 2^(4*n + 6) / (Pi*n^2). - Vaclav Kotesovec, May 29 2021
MAPLE
seq((2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!), n=0..30); # James A. Sellers, Feb 11 2002; adapted to offset 0 by Georg Fischer, May 29, 2021
MATHEMATICA
RecurrenceTable[{n*(n+2)*(n+3)*a[n] - 4*(n+1)*(2*n+1)*(2*n+3)*a[n-1] == 0, a[0]==2}, a, {n, 0, 16}] (* Georg Fischer, May 29 2021 *)
CROSSREFS
Cf. A005568 (row 0), A067637 (row 2), A067638 (row 3), A067639 (row 4).
Sequence in context: A037624 A077327 A173499 * A226301 A000906 A308945
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 05 2002
EXTENSIONS
More terms from James A. Sellers, Feb 11 2002
STATUS
approved