# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a067636 Showing 1-1 of 1 %I A067636 #21 Jul 05 2023 10:47:50 %S A067636 2,20,210,2352,27720,339768,4294290,55621280,734959368,9873696560, %T A067636 134510127752,1854385377600,25828939188000,362995937665200, %U A067636 5141806953167250,73343003232628800,1052697272275341000,15194039267330154000,220410039466873456200 %N A067636 Row 1 of table in A067640. %H A067636 J. L. Jacobsen and P. Zinn-Justin, A Transfer Matrix approach to the Enumeration of Knots, arXiv:math-ph/0102015, 2001-2002. %F A067636 a(n) = (2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!). [adapted to offset 0 by _Georg Fischer_, May 29 2021] %F A067636 D-finite with recurrence: a(0) = 2, n*(n+2)*(n+3)*a(n) - 4*(n+1)*(2*n+1)*(2*n+3)*a(n-1) = 0 for n >= 1. - _Georg Fischer_, May 29 2021 %F A067636 a(n) ~ 2^(4*n + 6) / (Pi*n^2). - _Vaclav Kotesovec_, May 29 2021 %p A067636 seq((2*n+2)!*(2*n+4)!/(n!*((n+2)!)^2*(n+3)!),n=0..30); # _James A. Sellers_, Feb 11 2002; adapted to offset 0 by _Georg Fischer_, May 29, 2021 %t A067636 RecurrenceTable[{n*(n+2)*(n+3)*a[n] - 4*(n+1)*(2*n+1)*(2*n+3)*a[n-1] == 0, a[0]==2},a,{n,0,16}] (* _Georg Fischer_, May 29 2021 *) %Y A067636 Cf. A005568 (row 0), A067637 (row 2), A067638 (row 3), A067639 (row 4). %K A067636 nonn,easy %O A067636 0,1 %A A067636 _N. J. A. Sloane_, Feb 05 2002 %E A067636 More terms from _James A. Sellers_, Feb 11 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE