[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066327
Binary string which equals n when 1's, 2's, 4's and 8's bits have weights -1, 1, 3, 6 respectively, while the other bits have their usual weights. -1 if no such string exists.
1
0, 10, 101, 100, 110, 1001, 1000, 1010, 1101, 1100, 1110, -1, -1, -1, -1, 10001, 10000, 10010, 10101, 10100, 10110, 11001, 11000, 11010, 11101, 11100, 11110, -1, -1, -1, -1, 100001, 100000, 100010, 100101, 100100, 100110, 101001, 101000, 101010, 101101, 101100, 101110, -1, -1, -1, -1, 110001
OFFSET
0,2
COMMENTS
After a(10), the pattern seems to be sequences of sixteen a(n), four of which without solution, then 12 formed by placing a member of the binary sequence 1,10,11,11,100,101 etc. in front of re-occurring list of the same 12 4-digit numbers. The description does not lead to a unique sequence: a(0)=0 and a(0)=11 are both valid. a(3)=111 and a(3)=100 are both valid. - R. J. Mathar, Mar 14 2006
REFERENCES
John M, Yarbough, Digital Logic Applications and Design, West Publishing, 1997. p. 25
PROG
(PARI) dig(n, digno, base) = { local(nshif) ; nshif=n ; for(shifr=0, digno-1, nshif = floor(nshif/base) ) ; nshif % base ; } binrep(n) = { local(nshif, resul) ; nshif=n; resul = Str(dig(nshif, 0, 2)) ; nshif=floor(nshif/2) ; while (nshif != 0, resul = concat(Str(dig(nshif, 0, 2)), resul) ; nshif=floor(nshif/2) ; ) ; return(resul) ; } modN(n) = { local(resul) ; resul = 16*floor(n/16) ; resul += -1*dig(n, 0, 2) ; resul += 1*dig(n, 1, 2) ; resul += 3*dig(n, 2, 2) ; resul += 6*dig(n, 3, 2) ; return(resul) ; } { for (n = 0, 60, for(an =0, 1000, if( modN(an) == n, anS = binrep(an) ; print1(anS, ", ") ; break ; ) ; if( an==1000, print("-1, ") ); ) ; ) } - R. J. Mathar, Mar 14 2006
CROSSREFS
Cf. A066335.
Sequence in context: A304237 A304238 A231889 * A277442 A351996 A077712
KEYWORD
easy,sign
AUTHOR
George E. Antoniou, Dec 15 2001
EXTENSIONS
More terms from R. J. Mathar, Mar 14 2006
STATUS
approved