[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065434
Decimal expansion of imaginary part of 2nd nontrivial zero of Riemann zeta function.
19
2, 1, 0, 2, 2, 0, 3, 9, 6, 3, 8, 7, 7, 1, 5, 5, 4, 9, 9, 2, 6, 2, 8, 4, 7, 9, 5, 9, 3, 8, 9, 6, 9, 0, 2, 7, 7, 7, 3, 3, 4, 3, 4, 0, 5, 2, 4, 9, 0, 2, 7, 8, 1, 7, 5, 4, 6, 2, 9, 5, 2, 0, 4, 0, 3, 5, 8, 7, 5, 9, 8, 5, 8, 6, 0, 6, 8, 8, 9, 0, 7, 9, 9, 7, 1, 3, 6, 5, 8, 5, 1, 4, 1, 8, 0, 1, 5, 1, 4
OFFSET
2,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.15.3, p. 138.
EXAMPLE
The zero is at 1/2 + i*21.0220396387715549926284795938969...
MAPLE
Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=21)); # Iaroslav V. Blagouchine, Jun 25 2016
MATHEMATICA
ZetaZero[2] // Im // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) solve(x=21, 22, real(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Jun 30 2011
(PARI) lfunzeros(1, [21, 22])[1] \\ M. F. Hasler, Nov 23 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2: this), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor).
Sequence in context: A256626 A135211 A029294 * A045832 A287528 A328312
KEYWORD
nonn,cons,changed
AUTHOR
N. J. A. Sloane, Nov 24 2001
STATUS
approved