[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052379
Number of integers from 1 to 10^(n+1)-1 that lack 0 and 1 as a digit.
11
8, 72, 584, 4680, 37448, 299592, 2396744, 19173960, 153391688, 1227133512, 9817068104, 78536544840, 628292358728, 5026338869832, 40210710958664, 321685687669320, 2573485501354568, 20587884010836552, 164703072086692424, 1317624576693539400, 10540996613548315208
OFFSET
0,1
FORMULA
a(n) = (8^(n+2) - 1)/7 - 1.
G.f.: 8/((1-x)*(1-8*x)). - R. J. Mathar, Nov 19 2007
a(n) = 8*a(n-1) + 8.
a(n) = Sum_{k=1..n} 8^k. - corrected by Michel Marcus, Sep 25 2014
Conjecture: a(n) = A023001(n+2)-1. - R. J. Mathar, May 18 2007. Comment from Vim Wenders, Mar 26 2008: The conjecture is true: the g.f. leads to the closed form a(n) = -(8/7)*(1^n) + (64/7)*(8^n) = (-8 + 64*8^n)/7 = (-8 + 8^(n+2))/7 = (8^(n+2) - 1)/7 - 1 = A023001(n+2) - 1.
a(n) = 9*a(n-1) - 8*a(n-2); a(0)=8, a(1)=72. - Harvey P. Dale, Sep 22 2013
a(n) = 8*A023001(n+1). - Alois P. Heinz, Feb 15 2023
EXAMPLE
For n=1, the numbers from 1 to 99 which have 0 or 1 as a digit are the numbers 1 and 10, 20, 30, ..., 90 and 11, 12, ..., 18, 19 and 21, 31, ..., 91. So a(1) = 99 - 27 = 72.
MAPLE
A052379:=n->(8^(n+2)-1)/7-1: seq(A052379(n), n=0..20); # Wesley Ivan Hurt, Sep 26 2014
MATHEMATICA
(8^(Range[0, 20]+2)-1)/7-1 (* or *) LinearRecurrence[{9, -8}, {8, 72}, 20] (* Harvey P. Dale, Sep 22 2013 *)
PROG
(Magma) [(8^(n+2)-1)/7-1: n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
(PARI) a(n)=8^(n+2)\7 - 1 \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Odimar Fabeny, Mar 12 2000
EXTENSIONS
More terms and revised description from James A. Sellers, Mar 13 2000
STATUS
approved