[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051959
Expansion of (1+6*x)/((1-2*x-x^2)*(1-x)^2).
1
1, 10, 36, 104, 273, 686, 1688, 4112, 9969, 24114, 58268, 140728, 339809, 820438, 1980784, 4782112, 11545121, 27872474, 67290196, 162453000, 392196337, 946845822, 2285888136, 5518622256, 13323132817, 32164888066, 77652909132, 187470706520, 452594322369, 1092659351462, 2637913025504, 6368485402688
OFFSET
0,2
LINKS
A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
FORMULA
a(n) = 2*a(n-1) + a(n-2) + (7*n+1), with a(0)=1, a(1)=10.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
a(n) = ( (25 + 17*sqrt(2))*(1+sqrt(2))^n - (25 - 17*sqrt(2))*(1-sqrt(2))^n )/(4*sqrt(2)) - (7*n + 15)/2.
a(n) = (1/2)*(4*Pell(n+2) - 3*Pell(n) - 7*n - 15), with Pell(n) = A000129(n). - Ralf Stephan, May 15 2007
E.g.f.: (1/4)*exp(x)*(-30 - 14*x + 25*sqrt(2)*sinh(sqrt(2)*x) + 34*cosh(sqrt(2)*x)). - G. C. Greubel, Nov 11 2024
MATHEMATICA
LinearRecurrence[{4, -4, 0, 1}, {1, 10, 36, 104}, 40] (* Vincenzo Librandi, Jun 22 2012 *)
PROG
(Magma) I:=[1, 10, 36, 104]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2) +Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
(SageMath)
def A051959(n):
@CachedFunction
def a(n):
if n<4: return (1, 10, 36, 104)[n]
else: return 4*a(n-1) -4*a(n-2) +a(n-4)
return a(n)
[A051959(n) for n in range(41)] # G. C. Greubel, Nov 11 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 04 2000
STATUS
approved