[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059473
Triangle T(n, k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w - 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
3
1, 2, 2, 4, 10, 4, 8, 32, 32, 8, 16, 88, 148, 88, 16, 32, 224, 536, 536, 224, 32, 64, 544, 1696, 2440, 1696, 544, 64, 128, 1280, 4928, 9344, 9344, 4928, 1280, 128, 256, 2944, 13504, 31936, 42256, 31936, 13504, 2944, 256, 512, 6656, 35456, 100736, 167072, 167072, 100736, 35456, 6656, 512
OFFSET
0,2
FORMULA
G.f.: 1/(1 - 2*z - 2*w - 2*z*w).
T(n, k) = Sum_{j=0..n} 2^(n + k - j)*binomial(n, j)*binomial(n + k - j, n). - G. C. Greubel, Oct 04 2017
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], -1/2). - Peter Luschny, Nov 26 2021
EXAMPLE
[0] 1;
[1] 2, 2;
[2] 4, 10, 4;
[3] 8, 32, 32, 8;
[4] 16, 88, 148, 88, 16;
[5] 32, 224, 536, 536, 224, 32;
[6] 64, 544, 1696, 2440, 1696, 544, 64;
...
MAPLE
read transforms; SERIES2(1/(1-2*z-2*w-2*z*w), x, y, 12): SERIES2TOLIST(%, x, y, 12);
# Alternative:
T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], -1/2):
for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
MATHEMATICA
T[n_, k_] := Sum[2^(n + k - j)*Binomial[n, j]*Binomial[n + k - j, n], {j, 0, n}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 04 2017 *)
CROSSREFS
Column k = 0 gives A000079.
T(n, n) gives A098270.
Sequence in context: A220323 A295416 A202802 * A240629 A360313 A162508
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Feb 03 2001
STATUS
approved