[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059475
Number of 2n X 2n half-turn symmetric alternating-sign matrices (HTSASM's).
6
1, 2, 10, 140, 5544, 622908, 198846076, 180473355920, 465904151957920, 3422048076740462480, 71525763221287897903500, 4254840960508487045451825000, 720428791920558617462950575000000, 347230535542092373572967034254050000000
OFFSET
0,2
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
Heuer, Dylan, Chelsey Morrow, Ben Noteboom, Sara Solhjem, Jessica Striker, and Corey Vorland. "Chained permutations and alternating sign matrices - Inspired by three-person chess." Discrete Mathematics 340, no. 12 (2017): 2732-2752. Also arXiv:1611.03387.
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2001.
FORMULA
a(n) = A005130(n)*A006366(n).
a(n) = A049503(n)*Product_{k=0..n-1} (3*k+2)/(3*k+1). - Seiichi Manyama, Jul 29 2018
a(n) ~ exp(1/18) * Gamma(1/3)^(2/3) * n^(1/18) * 3^(3*n^2 + 1/9) / (A^(2/3) * Pi^(1/3) * 2^(4*n^2 + 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
a[n_] := Product[(3k+1)(3k+2)(3k)!^2/(n+k)!^2, {k, 0, n-1}];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Sep 01 2018, after Seiichi Manyama *)
CROSSREFS
Even-numbered terms of A005158.
Sequence in context: A213955 A091990 A014228 * A156296 A003046 A337072
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved