[go: up one dir, main page]

login
A056940
Number of antichains (or order ideals) in the poset 4*m*n or plane partitions with at most m rows and n columns and entries <= 4.
17
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 35, 105, 35, 1, 1, 70, 490, 490, 70, 1, 1, 126, 1764, 4116, 1764, 126, 1, 1, 210, 5292, 24696, 24696, 5292, 210, 1, 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1, 1, 495, 32670, 457380, 1646568, 1646568, 457380, 32670, 495, 1
OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_4; cf. A342889. - N. J. A. Sloane, Apr 03 2021
Determinants of 4 X 4 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Row sums are: {1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, ...}. - Roger L. Bagula, Mar 08 2010
Also determinants of 4x4 arrays whose entries come from a single row: T(n,k) = det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. - Peter Bala, May 10 2012
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
P. A. MacMahon, Combinatory analysis, sect. 495, 1916.
R. P. Stanley, Theory and application of plane partitions, II. Studies in Appl. Math. 50 (1971), p. 259-279. DOI:10.1002/sapm1971503259. Thm. 18.1.
FORMULA
Product_{k=0..3} C(n+m+k, m+k)/C(n+k, k) gives the array as a square.
T(n,m,q) = c(n,q)/(c(m,q)*c(n-m,q)) with c(n,q) = Product_{i=1..n, j=0..q} (i + j), q = 3. - Roger L. Bagula, Mar 08 2010
From Peter Bala, Oct 13 2011: (Start)
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
EXAMPLE
Triangle begins as:
1.
1, 1.
1, 5, 1.
1, 15, 15, 1.
1, 35, 105, 35, 1.
1, 70, 490, 490, 70, 1.
1, 126, 1764, 4116, 1764, 126, 1.
1, 210, 5292, 24696, 24696, 5292, 210, 1.
1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1. - Roger L. Bagula, Mar 08 2010
MATHEMATICA
c[n_, q_] = Product[i + j, {j, 0, q}, {i, 1, n}];
T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]);
Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Mar 08 2010 *)(* modified by G. C. Greubel, Apr 13 2019 *)
PROG
(PARI) A056940(n, m)=prod(k=0, 3, binomial(n+m+k, m+k)/binomial(n+k, k)) \\ M. F. Hasler, Sep 26 2018
CROSSREFS
Antidiagonals sum to A005362 (Hoggatt sequence).
Cf. A056939 (q=2), A056940 (q=3), A056941 (q=4), A142465 (q=5), A142467 (q=6), A142468 (q=7), A174109 (q=8).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A136267 A109960 A196019 * A168288 A157523 A141691
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Sep 26 2018
STATUS
approved