[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of log( dC(x)/dx ), C(x) = e.g.f. for labeled connected graphs (A001187).
1

%I #10 Sep 09 2013 19:14:39

%S 0,1,3,28,570,22568,1682352,237014512,64144890960,33877404737792,

%T 35289907832496768,72958473002707495168,300387071466709317941760,

%U 2467720611903398552604259328,40493022471111759715270671578112,1327970521286614645847457853386207232

%N Expansion of log( dC(x)/dx ), C(x) = e.g.f. for labeled connected graphs (A001187).

%C a(n) is the number of connected simple labeled graphs G on {1,2,...,n+1} such that G is still connected upon removal of the vertex n+1. Equivalently, a(n) is the number of ways to form a connected simple labeled graph on {1,2,...,n} and then select a nonempty subset of its vertices. This statement translates immediately via the symbolic method into the e.g.f. given below. - _Geoffrey Critzer_, Sep 09 2013

%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 16, Eq. (1.3.3).

%H Alois P. Heinz, <a href="/A056066/b056066.txt">Table of n, a(n) for n = 0..80</a>

%F E.g.f.: A(2x) - A(x) where A(x) is the e.g.f. for A001187. - _Geoffrey Critzer_, Sep 09 2013

%p b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-

%p add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)

%p end:

%p a:= proc(n) option remember; `if`(n=0, 0, b(n+1)-

%p add(k*binomial(n, k)*b(n+1-k)*a(k), k=1..n-1)/n)

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 09 2013

%t nn=14;f[x_]:=Log[Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}]]+1;Range[0,nn]!CoefficientList[Series[f[2x]-f[x],{x,0,nn}],x] (* _Geoffrey Critzer_, Sep 09 2013 *)

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jul 29 2000