[go: up one dir, main page]

login
A056066
Expansion of log( dC(x)/dx ), C(x) = e.g.f. for labeled connected graphs (A001187).
1
0, 1, 3, 28, 570, 22568, 1682352, 237014512, 64144890960, 33877404737792, 35289907832496768, 72958473002707495168, 300387071466709317941760, 2467720611903398552604259328, 40493022471111759715270671578112, 1327970521286614645847457853386207232
OFFSET
0,3
COMMENTS
a(n) is the number of connected simple labeled graphs G on {1,2,...,n+1} such that G is still connected upon removal of the vertex n+1. Equivalently, a(n) is the number of ways to form a connected simple labeled graph on {1,2,...,n} and then select a nonempty subset of its vertices. This statement translates immediately via the symbolic method into the e.g.f. given below. - Geoffrey Critzer, Sep 09 2013
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 16, Eq. (1.3.3).
LINKS
FORMULA
E.g.f.: A(2x) - A(x) where A(x) is the e.g.f. for A001187. - Geoffrey Critzer, Sep 09 2013
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= proc(n) option remember; `if`(n=0, 0, b(n+1)-
add(k*binomial(n, k)*b(n+1-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 09 2013
MATHEMATICA
nn=14; f[x_]:=Log[Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]]+1; Range[0, nn]!CoefficientList[Series[f[2x]-f[x], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 09 2013 *)
CROSSREFS
Sequence in context: A248571 A062497 A367391 * A174483 A092985 A331196
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 29 2000
STATUS
approved