[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055843
Expansion of (1+3*x)/(1-x)^10.
3
1, 13, 85, 385, 1375, 4147, 11011, 26455, 58630, 121550, 238238, 445094, 797810, 1379210, 2309450, 3759074, 5965487, 9253475, 14060475, 20967375, 30735705, 44352165, 63081525, 88529025, 122713500, 168152556, 227961228, 305965660, 406833460, 536222500, 700950052
OFFSET
0,2
COMMENTS
Partial sums of A052181.
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = (4*n+9)*binomial(n+8, 8)/9.
G.f.: (1+3*x)/(1-x)^10.
a(n) = 4*binomial(n+9,9) - 3*binomial(n+8,8). - G. C. Greubel, Jan 21 2020
Sum_{n>=0} 1/a(n) = 9437184*Pi/24035 + 56623104*log(2)/24035 - 482087736/168245. - Amiram Eldar, Feb 17 2023
MAPLE
seq( (4*n+9)*binomial(n+8, 8)/9, n=0..30); # G. C. Greubel, Jan 21 2020
MATHEMATICA
Table[4*Binomial[n+9, 9] - 3*Binomial[n+8, 8], {n, 0, 30}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) vector(31, n, (4*n+5)*binomial(n+7, 8)/9) \\ G. C. Greubel, Jan 21 2020
(Magma) [(4*n+9)*Binomial(n+8, 8)/9: n in [0..30]]; // G. C. Greubel, Jan 21 2020
(Sage) [(4*n+9)*binomial(n+8, 8)/9 for n in (0..30)] # G. C. Greubel, Jan 21 2020
(GAP) List([0..30], n-> (4*n+9)*Binomial(n+8, 8)/9 ); # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A052181.
Cf. A093561 ((4, 1) Pascal, column m=9).
Sequence in context: A222491 A010025 A001848 * A296647 A233325 A003764
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 30 2000
STATUS
approved