[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055845
a(n) = 4*a(n-1) - a(n-2) with a(0)=1, a(1)=8.
4
1, 8, 31, 116, 433, 1616, 6031, 22508, 84001, 313496, 1169983, 4366436, 16295761, 60816608, 226970671, 847066076, 3161293633, 11798108456, 44031140191, 164326452308, 613274669041, 2288772223856
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (8*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(2*sqrt(3)).
G.f.: (1+4*x)/(1-4*x+x^2).
a(n)^2 = 3*A144721(n)^2 - 11. - Sture Sjöstedt, Nov 30 2011
From G. C. Greubel, Jan 20 2020: (Start)
a(n) = ChebyshevU(n,2) + 4*ChebyshevU(n-1,2).
E.g.f.: exp(2*x)*( cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) ). (End)
MAPLE
seq( simplify(ChebyshevU(n, 2) + 4*ChebyshevU(n-1, 2)), n=0..30); # G. C. Greubel, Jan 20 2020
MATHEMATICA
LinearRecurrence[{4, -1}, {1, 8}, 30] (* Sture Sjöstedt, Nov 30 2011 *)
Table[ChebyshevU[n, 2] + 4*ChebyshevU[n-1, 2], {n, 0, 30}] (* G. C. Greubel, Jan 20 2020 *)
PROG
(PARI) a(n) = polchebyshev(n, 2, 2) + 4*polchebyshev(n-1, 2, 2); \\ G. C. Greubel, Jan 20 2020
(Magma) I:=[1, 8]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 20 2020
(Sage) [chebyshev_U(n, 2) +4*chebyshev_U(n-1, 2) for n in (0..30)] # G. C. Greubel, Jan 20 2020
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 20 2020
CROSSREFS
Cf. A054485.
Sequence in context: A335606 A320416 A289613 * A034556 A121097 A121093
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 31 2000
STATUS
approved