Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:45:01
%S 1,8,31,116,433,1616,6031,22508,84001,313496,1169983,4366436,16295761,
%T 60816608,226970671,847066076,3161293633,11798108456,44031140191,
%U 164326452308,613274669041,2288772223856
%N a(n) = 4*a(n-1) - a(n-2) with a(0)=1, a(1)=8.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H G. C. Greubel, <a href="/A055845/b055845.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1).
%F a(n) = (8*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(2*sqrt(3)).
%F G.f.: (1+4*x)/(1-4*x+x^2).
%F a(n)^2 = 3*A144721(n)^2 - 11. - _Sture Sjöstedt_, Nov 30 2011
%F From _G. C. Greubel_, Jan 20 2020: (Start)
%F a(n) = ChebyshevU(n,2) + 4*ChebyshevU(n-1,2).
%F E.g.f.: exp(2*x)*( cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) ). (End)
%p seq( simplify(ChebyshevU(n,2) + 4*ChebyshevU(n-1,2)), n=0..30); # _G. C. Greubel_, Jan 20 2020
%t LinearRecurrence[{4,-1}, {1,8}, 30] (* _Sture Sjöstedt_, Nov 30 2011 *)
%t Table[ChebyshevU[n, 2] + 4*ChebyshevU[n-1, 2], {n,0,30}] (* _G. C. Greubel_, Jan 20 2020 *)
%o (PARI) a(n) = polchebyshev(n,2,2) + 4*polchebyshev(n-1,2,2); \\ _G. C. Greubel_, Jan 20 2020
%o (Magma) I:=[1,8]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 20 2020
%o (Sage) [chebyshev_U(n,2) +4*chebyshev_U(n-1,2) for n in (0..30)] # _G. C. Greubel_, Jan 20 2020
%o (GAP) a:=[1,8];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 20 2020
%Y Cf. A054485.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, May 31 2000