[go: up one dir, main page]

login
A048588
Pisot sequence L(7,8).
2
7, 8, 10, 13, 17, 23, 32, 45, 64, 92, 133, 193, 281, 410, 599, 876, 1282, 1877, 2749, 4027, 5900, 8645, 12668, 18564, 27205, 39869, 58429, 85630, 125495, 183920, 269546, 395037, 578953, 848495, 1243528, 1822477, 2670968, 3914492, 5736965, 8407929, 12322417
OFFSET
0,1
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 72000 but is not known to hold in general).
MAPLE
L := proc(a0, a1, n)
option remember;
if n = 0 then
a0 ;
elif n = 1 then
a1;
else
ceil( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)) ;
end if;
end proc:
A048588 := proc(n)
L(7, 8, n) ;
end proc: # R. J. Mathar, Feb 12 2016
MATHEMATICA
RecurrenceTable[{a[0] == 7, a[1] == 8, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Lxy:=[7, 8]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..50]]; // Bruno Berselli, Feb 05 2016
(PARI) pisotL(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
a
}
pisotL(50, 7, 8) \\ Colin Barker, Aug 07 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
Sequence in context: A067529 A080113 A243078 * A141676 A127164 A153972
KEYWORD
nonn
STATUS
approved