[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048277
Number of (not necessarily distinct) nonsquarefree numbers among C(n,k), k=0..n.
10
0, 0, 0, 0, 2, 0, 1, 0, 6, 8, 5, 0, 9, 4, 3, 2, 15, 12, 17, 12, 13, 12, 11, 0, 21, 22, 19, 26, 25, 18, 25, 20, 31, 30, 27, 28, 35, 30, 25, 28, 37, 30, 29, 18, 29, 38, 27, 6, 47, 48, 49, 48, 47, 36, 51, 50, 55, 52, 49, 38, 53, 36, 23, 56, 63, 62, 61, 60, 61, 54, 59, 54, 71, 66, 57
OFFSET
0,5
COMMENTS
Number of nonsquarefree numbers (A013929) on row n of Pascal's triangle (A007318). - Antti Karttunen, Nov 05 2014
LINKS
FORMULA
From Antti Karttunen, Nov 05 2014: (Start)
a(n) = 1 + n - A048276(n).
Also, for all n >= 0:
a(n) >= A249732(n).
a(n) >= A249733(n).
(End)
EXAMPLE
a(13) = 4 because C(13,5) = C(13,8) = 3^2*11*13 and C(13,6) = C(13,7) = 2^2*3*11*13.
If n=20, then C[ 20, k ] is divisible by a square for 13 values of k, i.e. for k = 1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, so a[ 20 ] = 13.
MAPLE
seq(nops(remove(numtheory:-issqrfree, [seq(binomial(n, k), k=0..n)])), n=0..100); # Robert Israel, Nov 05 2014
MATHEMATICA
f[ n_ ] := (c = 0; k = 1; While[ k < n, If[ Union[ Transpose[ FactorInteger[ Binomial[ n, k ] ] ] [ [ 2 ] ] ] [ [ -1 ] ] > 1, c++ ]; k++ ]; c); Table[ f[ n ], {n, 0, 75} ]
Table[(1 + n) - Length[Select[Binomial[n, Range[0, n]], SquareFreeQ[#] &]], {n, 0, 100}] (* Vincenzo Librandi, Nov 06 2014 *)
PROG
(PARI) a(n) = sum(k=0, n, !issquarefree(binomial(n, k))); \\ Michel Marcus, Mar 05 2014
(PARI)
A048277(n) = sum(k=0, n\2, ((0==moebius(binomial(n, k)))*(if(k<(n/2), 2, 1))));
for(n=0, 8192, write("b048277.txt", n, " ", A048277(n))); \\ b-file was computed with this program. - Antti Karttunen, Nov 05 2014
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by Michel Marcus, Mar 05 2014
STATUS
approved