[go: up one dir, main page]

login
A047347
Numbers that are congruent to {0, 1, 4} mod 7.
2
0, 1, 4, 7, 8, 11, 14, 15, 18, 21, 22, 25, 28, 29, 32, 35, 36, 39, 42, 43, 46, 49, 50, 53, 56, 57, 60, 63, 64, 67, 70, 71, 74, 77, 78, 81, 84, 85, 88, 91, 92, 95, 98, 99, 102, 105, 106, 109, 112, 113, 116, 119, 120, 123, 126, 127, 130, 133, 134, 137, 140, 141
OFFSET
1,3
FORMULA
G.f.: x^2*(1+3*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 7k-3, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)
MAPLE
A047347:=n->7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047347(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 1, 4}, Mod[#, 7]]&] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 7}, 100] (* Harvey P. Dale, Dec 05 2012 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A128373 A080578 A288479 * A188376 A356088 A137362
KEYWORD
nonn,easy
STATUS
approved