[go: up one dir, main page]

login
A033846
Numbers whose prime factors are 2 and 5.
23
10, 20, 40, 50, 80, 100, 160, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 16000, 20000, 20480, 25000, 25600, 31250, 32000, 40000, 40960
OFFSET
1,1
COMMENTS
Numbers k such that Sum_{d prime divisor of k} 1/d = 7/10. - Benoit Cloitre, Apr 13 2002
Numbers k such that phi(k) = (2/5)*k. - Benoit Cloitre, Apr 19 2002
Numbers k such that Sum_{d|k} A008683(d)*A000700(d) = 7. - Carl Najafi, Oct 20 2011
LINKS
FORMULA
a(n) = 10*A003592(n).
A143201(a(n)) = 4. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/4. - Amiram Eldar, Dec 22 2020
MAPLE
A033846 := proc(n)
if (numtheory[factorset](n) = {2, 5}) then
RETURN(n)
fi: end: seq(A033846(n), n=1..50000); # Jani Melik, Feb 24 2011
MATHEMATICA
Take[Union[Times@@@Select[Flatten[Table[Tuples[{2, 5}, n], {n, 2, 15}], 1], Length[Union[#]]>1&]], 45] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(PARI) isA033846(n)=factor(n)[, 1]==[2, 5]~ \\ Charles R Greathouse IV, Feb 24 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a033846 n = a033846_list !! (n-1)
a033846_list = f (singleton (2*5)) where
f s = m : f (insert (2*m) $ insert (5*m) s') where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 13 2011
(Magma) [n:n in [1..100000]| Set(PrimeDivisors(n)) eq {2, 5}]; // Marius A. Burtea, May 10 2019
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset fixed by Reinhard Zumkeller, Sep 13 2011
STATUS
approved