OFFSET
1,1
COMMENTS
Denominator of (Product_{k=1..n-1} (1 - 1/prime(k)))/prime(n). - Vladimir Shevelev, Jan 09 2015
a(n)/a(n-1) = prime(n)/q(n) where q(n) is 1 or a prime for all n < 1000. What are the first indices for which q(n) is composite? - M. F. Hasler, Dec 04 2018
LINKS
Robert Israel, Table of n, a(n) for n = 1..277
Fred Kline and Gerry Myerson, Identity for frequency of integers with smallest prime(n) divisor, Mathematics Stack Exchange, Jul 2014.
Vladimir Shevelev, Generalized Newman phenomena and digit conjectures on primes, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12. Eq. (5.8).
FORMULA
a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014
a(n) = prime(n)*A060753(n). - Vladimir Shevelev, Jan 10 2015
a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - M. F. Hasler, Dec 03 2018
EXAMPLE
From M. F. Hasler, Dec 03 2018: (Start)
The density of the even numbers is 1/2, thus a(1) = 2.
The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6.
The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End)
MAPLE
N:= 100: # for the first N terms
Q:= 1: p:= 1:
for n from 1 to N do
p:= nextprime(p);
A[n]:= denom(Q/p);
Q:= Q * (1 - 1/p);
end:
seq(A[n], n=1..N); # Robert Israel, Jul 14 2014
MATHEMATICA
Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ]
(* Wouter Meeussen *)
Denominator@
Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}]
(* Fred Daniel Kline, Jul 14 2014 *)
PROG
(PARI) apply( A038111(n)=denominator(prod(k=1, n-1, 1-1/prime(k)))*prime(n), [1..30]) \\ M. F. Hasler, Dec 03 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
Name edited by M. F. Hasler, Dec 03 2018
STATUS
approved