[go: up one dir, main page]

login
A035659
Number of partitions of n into parts 7k+1 and 7k+4 with at least one part of each type.
3
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 7, 8, 8, 11, 14, 15, 15, 19, 22, 23, 27, 33, 37, 38, 44, 50, 54, 60, 71, 79, 84, 94, 106, 114, 125, 143, 159, 169, 187, 208, 225, 242, 273, 302, 323, 351, 390, 421, 451, 498, 551, 590, 636, 697, 757, 807, 881, 965, 1039
OFFSET
1,9
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 125 terms from Robert Price)
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(7 k + 4))). - Robert Price, Aug 16 2020
MATHEMATICA
nmax = 64; s1 = Range[0, nmax/7]*7 + 1; s2 = Range[0, nmax/7]*7 + 4;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 14 2020 *)
nmax = 64; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
KEYWORD
nonn
STATUS
approved