[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of eta(8z)*eta(16z)*theta_3(z).
1

%I #21 Nov 06 2017 02:43:27

%S 1,2,0,0,2,0,0,0,-1,0,0,0,-2,0,0,0,0,-6,0,0,-4,0,0,0,-1,0,0,0,2,0,0,0,

%T -4,0,0,0,2,0,0,0,4,0,0,0,2,0,0,0,1,10,0,0,-2,0,0,0,4,0,0,0,2,0,0,0,4,

%U 0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,-3,0,0,0,4,0,0,0,-4,0,0,0,-4,0,0,0,0

%N Expansion of eta(8z)*eta(16z)*theta_3(z).

%D Ono and Skinner, Ann. Math., 147 (1998), 453-470.

%H G. C. Greubel, <a href="/A034949/b034949.txt">Table of n, a(n) for n = 1..1000</a>

%H Matija Kazalicki, <a href="http://dx.doi.org/10.1016/j.jnt.2012.09.018">Congruent numbers and congruences between half-integral weight modular forms</a>, Journal of Number Theory 133.4 (2013): 1079-1085; MR 3003987 [From _N. J. A. Sloane_, Oct 18 2014]

%F Expansion of eta(q^2)^5 * eta(q^8) * eta(q^16) / (eta(q)^2 * eta(q^4)^2) in powers of q. - _Michael Somos_, Nov 03 2011

%F Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, -3, ...]. - _Michael Somos_, Nov 03 2011

%e x + 2*x^2 + 2*x^5 - x^9 - 2*x^13 - 6*x^18 - 4*x^21 - x^25 + 2*x^29 + ...

%t QP = QPochhammer; s = QP[q^2]^5*QP[q^8]*(QP[q^16]/(QP[q]^2*QP[q^4]^2)) + O[q]^100; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015, after _Michael Somos_ *)

%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) * eta(x^16 + A) / (eta(x + A)^2 * eta(x^4 + A)^2), n))} /* _Michael Somos_, Nov 03 2011 */

%K sign

%O 1,2

%A _N. J. A. Sloane_