[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029146
Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^9)).
1
1, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9, 11, 13, 13, 16, 17, 18, 21, 23, 24, 27, 30, 31, 35, 38, 39, 44, 47, 49, 54, 58, 60, 66, 70, 73, 79, 84, 87, 94, 100, 103, 111, 117, 121, 130, 136, 141, 150, 158, 163, 173, 181, 187, 198, 207, 213, 225, 235, 242, 255, 265, 273, 287, 298, 307, 321, 334
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 2, 3, 5, and 9. - Joerg Arndt, Aug 16 2013
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,0,-1,-1,1,1,-1,-1,0,0,0,1,1,0,-1).
MATHEMATICA
CoefficientList[Series[1 / ((1 - x^2) (1 - x^3) (1 - x^5) (1 - x^9)), {x, 0, 80}], x] (* Vincenzo Librandi, Aug 17 2013 *)
PROG
(PARI) a(n)=round((n\3+1)*(-2)^(n%3%2)/27+(n%5<2)*(-1)^(n%5)/5+(2*n+19)*(2*n^2+38*n+121)/6480) \\ Tani Akinari, Aug 15 2013
(PARI) Vec( 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^9)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
CROSSREFS
Sequence in context: A025768 A000929 A325358 * A029053 A053254 A067357
KEYWORD
nonn,easy
STATUS
approved