OFFSET
0,6
COMMENTS
Number of partitions of n into parts 2, 3, 5, and 8. - Joerg Arndt, Jul 07 2013
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,0,-1,0,0,0,-1,0,0,0,1,1,0,-1).
FORMULA
a(n) = floor((2*n^3+54*n^2+435*n+2435+45*(n+1)*(-1)^n)/2880+1/4*(((-1)^n+floor((n+1)/4)-floor(n/4))*(-1)^floor(n/4))). - Tani Akinari, Jul 07 2013
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral)
a029145 n = a029145_list !! n
a029145_list = map (p' 0) [0..] where
p' = memo2 integral integral p
p _ 0 = 1
p 4 _ = 0
p k m | m < parts !! k = 0
| otherwise = p' k (m - parts !! k) + p' (k + 1) m
parts = [2, 3, 5, 8]
-- Reinhard Zumkeller, Dec 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved