[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027640
Poincaré series [or Poincare series] for ring of modular forms of genus 2.
4
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 4, 0, 4, 0, 5, 0, 6, 0, 8, 0, 7, 0, 10, 0, 11, 0, 12, 0, 14, 1, 17, 0, 16, 1, 21, 1, 22, 1, 24, 2, 27, 3, 31, 2, 31, 4, 37, 4, 39, 5, 42, 6, 46, 8, 52, 7, 52, 10, 60, 11, 63, 12, 67, 14
OFFSET
0,11
COMMENTS
a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight k (for the full modular group Gamma_2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
REFERENCES
B. Runge, On Siegel modular forms I, J. Reine Angew. Math., 436 (1993), 57-85.
LINKS
J. Igusa, On Siegel modular forms of genus 2 (II), Amer. J. Math., 86 (1964), 392-412, esp. p. 402.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,-1,-1,-1,1,0,0,1,-1,-1,-1,0,0,1,1,1,0,0,0,-1).
FORMULA
G.f.: (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)).
MATHEMATICA
Table[SeriesCoefficient[Series[(1+t^(35))/((1-t^4) (1-t^6)(1-t^(10)) (1-t^(12))), {t, 0, 100}], i], {i, 0, 100}] (* Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009 *)
PROG
(PARI) Vec((1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) + O(x^100)) \\ Colin Barker, Jul 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) )); // G. C. Greubel, Aug 04 2022
(Sage)
def A027640_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) ).list()
A027640_list(100) # G. C. Greubel, Aug 04 2022
CROSSREFS
Cf. A165685 for the corresponding dimension of the space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
Sequence in context: A128145 A128143 A292561 * A349448 A194666 A325799
KEYWORD
nonn,easy
STATUS
approved