[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027339
Number of partitions of n that do not contain 5 as a part.
2
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 134, 175, 220, 284, 355, 451, 561, 705, 870, 1085, 1331, 1644, 2008, 2463, 2990, 3646, 4406, 5339, 6425, 7745, 9279, 11135, 13288, 15872, 18875, 22455, 26606, 31537, 37246, 43990, 51796, 60975
OFFSET
0,3
FORMULA
G.f.: (1-x^5) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-5).
a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 5*Pi/(2*sqrt(6)))/sqrt(n) + (61/8 + 9/(2*Pi^2) + 4921*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(FreeQ[#, 5]&)], {n, 0, 50}] (* Harvey P. Dale, Jul 11 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff((1-x^5)/eta(x+x*O(x^n)), n))
CROSSREFS
Column 5 of A175788.
Sequence in context: A035983 A035993 A036004 * A039837 A039838 A064173
KEYWORD
nonn
EXTENSIONS
More terms from Benoit Cloitre, Dec 10 2002
STATUS
approved