[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027337
Number of partitions of n that do not contain 3 as a part.
5
1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 59, 79, 99, 130, 162, 209, 259, 330, 407, 512, 628, 783, 956, 1181, 1435, 1760, 2129, 2594, 3124, 3784, 4539, 5468, 6534, 7834, 9327, 11132, 13208, 15701, 18568, 21989, 25923, 30592, 35960, 42297, 49579, 58139, 67967
OFFSET
0,3
COMMENTS
a(n) is also the number of partitions of n with less than three 1's. - Geoffrey Critzer, Jun 20 2014
FORMULA
G.f.: (1-x^3) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n) - A000041(n-3).
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 3*Pi/(2*sqrt(6)))/sqrt(n) + (37/8 + 9/(2*Pi^2) + 1801*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016
MATHEMATICA
nn=49; CoefficientList[Series[(1-x^3)Product[1/(1-x^i), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 20 2014 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff((1-x^3)/eta(x+x*O(x^n)), n))
CROSSREFS
Column k=0 of A263232.
Column 3 of A175788.
Sequence in context: A035991 A036002 A104504 * A364892 A325434 A326631
KEYWORD
nonn
STATUS
approved