[go: up one dir, main page]

login
A026800
Number of partitions of n in which the least part is 7.
19
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
OFFSET
0,22
COMMENTS
From Jason Kimberley, Feb 03 2011: (Start)
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth exactly 7 (all such graphs are simple). The integer i corresponds to the i-cycle; the addition of integers corresponds to the disconnected union of cycles.
By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. (End)
FORMULA
G.f.: x^7 * Product_{m>=7} 1/(1-x^m).
a(n) = p(n-7) -p(n-8) -p(n-9) +p(n-12) +2*p(n-14) -p(n-16) -p(n-17) -p(n-18) -p(n-19) +2*p(n-21) +p(n-23) -p(n-26) -p(n-27) +p(n-28) where p(n)=A000041(n) including the implicit p(n)=0 for negative n. - Shanzhen Gao, Oct 28 2010; offset corrected / made explicit by Jason Kimberley, Feb 03 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(7*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
EXAMPLE
a(0)=0 because there does not exist a least part of the empty partition.
The a(7)=1 partition is 7.
The a(14)=1 partition is 7+7.
The a(15)=1 partition is 7+8.
.............................
The a(20)=1 partition is 7+13.
The a(21)=2 partitions are 7+7+7 and 7+14.
MAPLE
N:= 100: # for a(0)..a(N)
S:= series(x^7/mul(1-x^i, i=7..N-7), x, N+1):
seq(coeff(S, x, i), i=0..N); # Robert Israel, Jul 04 2019
MATHEMATICA
CoefficientList[Series[x^7/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(Magma) p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
A026800 := func< n | p(n-7)-p(n-8)-p(n-9)+p(n-12)+2*p(n-14)-p(n-16)- p(n-17)-p(n-18)-p(n-19)+2*p(n-21)+p(n-23)-p(n-26)-p(n-27)+p(n-28) >; // Jason Kimberley, Feb 03 2011
(Magma) R<x>:=PowerSeriesRing(Integers(), 75); [0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!( x^7/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
(PARI) my(x='x+O('x^75)); concat([0, 0, 0, 0, 0, 0, 0], Vec(x^7/prod(m=0, 80, 1-x^(m+7)))) \\ G. C. Greubel, Nov 03 2019
(Sage)
def A026800_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^7/product((1-x^(m+7)) for m in (0..80)) ).list()
A026800_list(75) # G. C. Greubel, Nov 03 2019
CROSSREFS
Cf. A185327 (Mathematica code)
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), this sequence (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 03 2011
Sequence in context: A185229 A026825 A025150 * A185327 A210717 A171962
KEYWORD
nonn,easy
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001
STATUS
approved