[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025896
Expansion of 1/((1-x^5)*(1-x^11)*(1-x^12)).
9
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 7, 6, 6
OFFSET
0,23
COMMENTS
a(n) is the number of partitions of n into parts 5, 11, and 12. - Joerg Arndt, Jan 17 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)*(1-x^11)*(1-x^12)), {x, 0, 120}], x] (* G. C. Greubel, Jan 17 2024 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 120); Coefficients(R!( 1/((1-x^5)*(1-x^11)*(1-x^12)) )); // G. C. Greubel, Jan 17 2024
(SageMath)
def A025896_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^11)*(1-x^12)) ).list()
A025896_list(120) # G. C. Greubel, Jan 17 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved