[go: up one dir, main page]

login
A025888
Expansion of 1/((1-x^5)*(1-x^8)*(1-x^10)).
4
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 6, 3, 2, 4, 3, 6, 4, 2, 6, 3, 8, 4, 3, 6, 4, 8, 6, 3, 8, 4, 10, 6, 4, 8, 6, 10, 8, 4, 10, 6, 12, 8, 6, 10, 8, 12, 10, 6
OFFSET
0,11
COMMENTS
a(n) is the number of partitions of n into parts 5, 8, and 10. - Joerg Arndt, Nov 20 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,1,0,1,0,0,-1,0,-1,0,0,-1,0,0,0,0,1).
FORMULA
a(n) = a(n-5) + a(n-8) + a(n-10) - a(n-13) - a(n-15) - a(n-18) + a(n-23). - G. C. Greubel, Nov 19 2022
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^8)(1-x^10)), {x, 0, 100}], x] (* Harvey P. Dale, Jul 26 2011 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^8)*(1-x^10)) )); // G. C. Greubel, Nov 19 2022
(SageMath)
def A025888_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^8)*(1-x^10)) ).list()
A025888_list(90) # G. C. Greubel, Nov 19 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved