[go: up one dir, main page]

login
A025429
Number of partitions of n into 5 nonzero squares.
23
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 0, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 5, 2, 2, 5, 1, 3, 5, 1, 5, 4, 2, 5, 3, 2, 5, 5, 3, 4, 4, 4, 3, 5, 4, 4, 7, 3, 5, 6, 2, 4, 7, 4, 7, 6, 3, 7, 4, 3, 8, 6, 5, 7, 5, 5, 4, 6, 7, 6, 9, 5, 6, 8, 2, 8
OFFSET
0,21
COMMENTS
a(33) is the last zero in this sequence, cf. the link to Mathematics Stack Exchange and also A080673(n) for the largest index k with a(k)=n. - M. F. Hasler, May 30 2014
First occurrence of k beginning with 0: 0, 5, 20, 29, 62, 53, 80, 77, 91, 101, ..., (A080654). - Robert G. Wilson v, May 30 2014
FORMULA
a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(n-i-j-k-l). - Wesley Ivan Hurt, Apr 19 2019
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^2>n, 0, b(n-i^2, i, t-1))))
end:
a:= n-> b(n, isqrt(n), 5):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
f[n_] := Block[{c = Range@ Sqrt@ n^2}, Length@ IntegerPartitions[n, {5}, c]]; Array[f, 105, 0] (* Robert G. Wilson v, May 30 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[i<1 || t<1, 0, b[n, i-1, t] + If[i^2>n, 0, b[n-i^2, i, t-1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 5]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
PROG
(PARI) A025429(n)=sum(d=sqrtint(max(n, 5)\5), sqrtint(max(n-4, 0)), nn=n-d^2; sum(a=sqrtint(max(nn-d^2, 4)\4), min(sqrtint(max(nn-3, 0)), d), sum(b=sqrtint((nn-a^2)\3-1)+1, min(sqrtint(nn-a^2-2), a), sum(c=sqrtint((t=nn-a^2-b^2)\2-1)+1, min(sqrtint(t-1), b), issquare(t-c^2) )))) \\ M. F. Hasler, May 30 2014
CROSSREFS
Column k=5 of A243148.
Sequence in context: A098744 A337584 A273975 * A325561 A076250 A360963
KEYWORD
nonn,easy,look
STATUS
approved