[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010719
Period 2: repeat {5,8}.
5
5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5
OFFSET
0,1
COMMENTS
The inverse binomial transform is 5, 3, -6, 12, -24, 48, -96, 192, -384, 768, ... essentially A110164. - R. J. Mathar, Feb 25 2023
FORMULA
a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 8. G.f.: (5+8*x)/((1-x)*(1+x)). - Vincenzo Librandi, Aug 01 2010
a(n) = 3*(n mod 2) + 5. - Wesley Ivan Hurt, Jun 14 2014
MAPLE
A010719:=n->3*(n mod 2) + 5; seq(A010719(n), n=0..50); # Wesley Ivan Hurt, Jun 14 2014
MATHEMATICA
Table[3 Mod[n, 2] + 5, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 14 2014 *)
PROG
(Magma) [ 3*(n mod 2) + 5 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
CROSSREFS
Cf. A176323.
Sequence in context: A358630 A100610 A101465 * A246903 A213022 A198732
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved