OFFSET
1,4
COMMENTS
For n > 1: a(n) = 1 iff n is prime; a(A001358(n)) = A084127(n); a(A025475(n)) = A020639(A025475(n)). [corrected by Peter Munn, Feb 19 2017]
When n is composite, this is the 2nd factor when n is written as a product of primes in nondecreasing order. For example, 12 = 2*2*3, so a(12) = 2. - Peter Munn, Feb 19 2017
For all sufficiently large n the median value of a(1), a(2), ... a(n) is A281889(2) = 7. - Peter Munn, Jul 12 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
MATHEMATICA
PrimeFactors[ n_ ] := Flatten[ Table[ # [ [ 1 ] ], {1} ] & /@ FactorInteger[ n ] ]; f[ n_ ] := Block[ {gpd = Divisors[ n ][ [ -2 ] ]}, If[ gpd == 1, 1, PrimeFactors[ gpd ][ [ 1 ] ] ] ]; Table[ If[ n == 1, 1, f[ n ] ], {n, 1, 95} ]
(* Second program: *)
Table[If[Or[PrimeQ@ n, n == 1], 1, FactorInteger[n/SelectFirst[Prime@ Range@ PrimePi[Sqrt@ n], Divisible[n, #] &]][[1, 1]] ], {n, 94}] (* Michael De Vlieger, Aug 14 2017 *)
PROG
(PARI) lpf(n)=if(n>1, factor(n)[1, 1], 1)
a(n)=lpf(n/lpf(n)) \\ Charles R Greathouse IV, May 09 2013
(PARI) a(n)=if(n<4||isprime(n), return(1)); my(f=factor(n)); if(f[1, 2]>1, f[1, 1], f[2, 1]) \\ Charles R Greathouse IV, May 09 2013
(Scheme) (define (A014673 n) (A020639 (/ n (A020639 n)))) ;; Code for A020639 given under that entry - Antti Karttunen, Aug 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 24 2003
STATUS
approved