[go: up one dir, main page]

login
A014306
a(n) = 0 if n of form m(m+1)(m+2)/6, otherwise 1.
39
0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
a(A145397(n))=1; a(A000292(n))=0; a(n)=1-A023533(n). - Reinhard Zumkeller, Oct 14 2008
Characteristic function of A145397.
EXAMPLE
From David A. Corneth, Oct 01 2018: (Start)
For n = 0, floor((6*0-1) ^ (1/3)) = -1. binomial(-1 + 2, 3) = n so a(0) = 0.
For n = 10, floor((6*n-1) ^ (1/3)) = 3. binomial(3 + 2, 3) = n so a(10) = 0.
For n = 11, floor((6*n-1) ^ (1/3)) = 3. binomial(3 + 2, 3) != n so a(11) = 1. (End)
PROG
(PARI) A014306(n) = { my(k=0); while(binomial(k+2, 3)<n, k++); !(binomial(k+2, 3)==n); }; \\ Antti Karttunen, Sep 30 2018
(PARI) a(n) = if(n==0, return(0)); my(t = sqrtnint(6*n-1, 3)); binomial(t+2, 3) != n \\ David A. Corneth, Oct 01 2018
(PARI) first(n) = my(res = vector(n+1, i, 1), ov = nv = [1, 2, 1, 0]); while(nv[4]<=n, res[nv[4]+1] = 0; for(i = 2, 4, nv[i] = ov[i-1] + ov[i]); ov = nv); res \\ David A. Corneth, Oct 01 2018
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Data section extended up to a(120) by Antti Karttunen, Sep 30 2018
STATUS
approved