[go: up one dir, main page]

login
A003053
Order of orthogonal group O(n, GF(2)).
(Formerly M1716)
11
1, 2, 6, 48, 720, 23040, 1451520, 185794560, 47377612800, 24257337753600, 24815256521932800, 50821645356918374400, 208114637736580743168000, 1704875112338069448032256000, 27930968965434591767112450048000, 915241991059360703024740763172864000
OFFSET
1,2
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway et al., ATLAS of Finite Groups, Chapter 2.
F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly, 76 (1969), 152-164.
FORMULA
For formulas see Maple code.
Asymptotics: a(n) ~ c * 2^((n^2-n)/2), where c = (1/4; 1/4)_infinity ~ 0.6885375... is expressed in terms of the Q-Pochhammer symbol. - Cedric Lorand, Aug 07 2017
MAPLE
h:=proc(n) local m;
if n mod 2 = 0 then m:=n/2;
2^(m^2)*mul( 4^i-1, i=1..m);
else m:=(n+1)/2;
2^(m^2)*mul( 4^i-1, i=1..m-1);
fi;
end;
# This produces a(n+1)
MATHEMATICA
h[n_] := Module[{m}, If[EvenQ[n], m = n/2; 2^(m^2)*Product[4^i-1, {i, 1, m}], m = (n+1)/2; 2^(m^2)*Product[4^i-1, {i, 1, m-1}]]];
a[n_] := h[n-1];
Array[a, 16] (* Jean-François Alcover, Aug 18 2022, after Maple code *)
PROG
(PARI) a(n) = n--; if (n % 2, m = (n+1)/2; 2^(m^2)*prod(k=1, m-1, 4^k-1), m = n/2; 2^(m^2)*prod(k=1, m, 4^k-1)); \\ Michel Marcus, Jul 13 2017
(Python)
def size_binary_orthogonal_group(n):
k = n-1
if k%2==0:
m=k//2
p=2**(m**2)
for i in range(1, m+1):
p*=4**i-1
else:
m=(k+1)//2
p=2**(m**2)
for i in range(1, m):
p*=4**i-1
return p
#call and print output for a(n)
print([size_binary_orthogonal_group(n) for n in range(1, 10)])
# Nathan J. Russell, Nov 01 2017
(Python)
from math import prod
def A003053(n): return (1 << (n//2)**2)*prod((1 << i)-1 for i in range(2, 2*((n-1)//2)+1, 2)) # Chai Wah Wu, Jun 20 2022
CROSSREFS
Bisections give A003923 and A090770.
Sequence in context: A365287 A129464 A175430 * A113296 A275462 A063744
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 30 2008
Edited by W. Edwin Clark et al., Jan 15 2015
STATUS
approved