[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002103
Coefficients of expansion of Jacobi nome q in certain powers of (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')).
(Formerly M2082 N0823)
13
1, 2, 15, 150, 1707, 20910, 268616, 3567400, 48555069, 673458874, 9481557398, 135119529972, 1944997539623, 28235172753886, 412850231439153, 6074299605748746, 89857589279037102, 1335623521633805028
OFFSET
0,2
COMMENTS
The Fricke reference has equation q^(1/4) = (sqrt(k) / 2) + 2(sqrt(k) / 2)^5 + 15(sqrt(k) / 2)^9 + 150(sqrt(k) / 2)^13 + 1707(sqrt(k) / 2)^17 + ... - Michael Somos, Jul 13 2013
a(n)^(1/n) tends to 16. - Vaclav Kotesovec, Jul 02 2016
a(n-1) appears in the expansion of the Jacobi nome q as q = x*Sum_{n >= 1} a(n-1)*x^(4*n) with x = (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')), with the complementary modulus k' of elliptic functions. See, e.g., the Fricke, Kneser and Tricomi references, and the g.f. with example below. - Wolfdieter Lang, Jul 09 2016
The King-Canfield (1992) reference shows how this sequence is used in real life - it is one of the ingredients in solving the general quintic equation using elliptic functions. - N. J. A. Sloane, Dec 24 2019
REFERENCES
King, R. B., and E. R. Canfield. "Icosahedral symmetry and the quintic equation." Computers & Mathematics with Applications 24.3 (1992): 13-28. See Eq. (4.28).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948, p. 176, eq. (3.88).
Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publishing, 1989, page 512.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..800 (terms 0..200 from Vincenzo Librandi)
J. N. Bramhall, An iterative method for inversion of power series, Comm. ACM 4 1961 317-318.
H. R. P. Ferguson, D. E. Nielsen and G. Cook, A partition formula for the integer coefficients of the theta function nome, Math. Comp., 29 (1975), 851-855.
H. E. Fettis, Note on the computation of Jacobi's Nome and its inverse, Computing, 4 (1969), 202-206.
A. Fletcher, Guide to tables of elliptic functions, Math. Tables Other Aids Computation, 3 (1948), 229-281, Section III, p. 234. MR0030295 (10,741b)
R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012, p. 3, eq. (6)
C. Hermite, Annotated scan of a page from the Oeuvres, together with a page from Math. Tables Aids Comp., Vol. 3, 1948 that refers to it.
A. Kneser, Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen, J. reine u. angew. Math. 157, 1927, 209 - 218, p.218.
A. N. Lowan, G. Blanch and W. Horenstein, On the inversion of the q-series associated with Jacobian elliptic functions, Bull. Amer. Math. Soc., 48 (1942), 737-738.
R. E. Shafer, Review of Fettis (1969), Computing Reviews, July 1970, page 401 [Annotated scanned copy]
FORMULA
a(n) = Sum {1<=k<=n} (-1)^k Sum { (4n+k)! C_1^b_1 ... C_n^b_n / (4n+1)! b_1! ... b_n! }, where the inner sum is over all partitions k = b_1 + ... + b_n, n = Sum i*b_i, b_i >= 0 and C_0=1, C_1=-2, C_2=5, C_3=-10 ... is given by (-1)^n*A001936(n).
G.f.: Series_Reversion( (theta_3(x) - theta_3(-x)) / (4*theta_3(x^4)) ) = Sum_{n>=0} a(n)*x^(4*n+1), where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - Paul D. Hanna, Jan 07 2014
EXAMPLE
G.f. = 1 + 2*x + 15*x^2 + 150*x^3 + 1707*x^4 + 20910*x^5 + 268616*x^6 + 3567400*x^7 + ...
Jacobi nome q = x + 2x^5 + 15x^9 + 150x^13 + ... where x = q - 2q^5 + 5q^9 - 10q^13 + ... coefficients from A079006.
The series reversion of q = x + 2*x^5 + 15*x^9 + 150*x^13 + 1707*x^17 + ... equals (x + x^9 + x^25 + x^49 + ...)/(1 + 2*x^4 + 2*x^16 + 2*x^36 + 2*x^64 + ...).
MATHEMATICA
max = 18; A079006[n_] := SeriesCoefficient[ Product[(1+x^(k+1)) / (1+x^k), {k, 1, n, 2}]^2, {x, 0, n}]; A079006[0] = 1; sq = Series[ Sum[ A079006[n]*q^(4n+1), {n, 0, max}], {q, 0, 4max}]; coes = CoefficientList[ InverseSeries[ sq, x], x]; a[n_] := coes[[4n + 2]]; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, Nov 08 2011, after Michael Somos *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (EllipticNomeQ[ 16 x] / x)^(1/4), {x, 0, n}]]; (* Michael Somos, Jul 13 2013 *)
a[ n_] := With[{m = 4 n + 1}, If[ n < 0, 0, SeriesCoefficient[ InverseSeries[ Series[ q (QPochhammer[ q^16] / QPochhammer[-q^4])^2, {q, 0, m}], x], {x, 0, m}]]]; (* Michael Somos, Jul 13 2013 *)
a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries[ Series[ 1/2 EllipticTheta[ 2, 0, x^4] / EllipticTheta[ 3, 0, x^4], {x, 0, m}]], {x, 0, m}]]; (* Michael Somos, Apr 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n = 4*n + 1; A = O(x^n); polcoeff( serreverse( x * (eta(x^4 + A) * eta(x^16 + A)^2 / eta(x^8 + A)^3)^2), n))};
(PARI) {a(n)=local(A, N=sqrtint(n)+1); A=serreverse(sum(n=1, N, x^((2*n-1)^2))/(1+2*sum(n=1, N, x^(4*n^2)) +O(x^(4*n+4)))); polcoeff(A, 4*n+1)} \\ Paul D. Hanna, Jan 07 2014
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved