OFFSET
0,3
COMMENTS
Planar partitions into at most three rows. - Joerg Arndt, May 01 2013
Number of partitions of n where there is one sort of part 1, two sorts of part 2, and three sorts of every other part. - Joerg Arndt, Mar 15 2014
REFERENCES
L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.8).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..6000 (first 1000 terms from Alois P. Heinz)
M. S. Cheema and B. Gordon, Some remarks on two- and three-line partitions, Duke Math. J., 31 (1964), 267-273.
P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116.
FORMULA
G.f.: (1-x)^2 * (1-x^2) / Product_(k>=1, 1-x^k )^3.
For n>=4, a(n) = A000716(n) - 2*A000716(n-1) + 2*A000716(n-3) - A000716(n-4). - Vaclav Kotesovec, Oct 28 2015
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n)) / (16*n^3). - Vaclav Kotesovec, Oct 28 2015
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(min(i, 3)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 3]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
nmax = 40; CoefficientList[Series[(1-x)^2 * (1-x^2) * Product[1/(1-x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
PROG
(PARI) x='x+O('x^66); Vec((1-x)^2*(1-x^2)/eta(x)^3) \\ Joerg Arndt, May 01 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^2*(1-x^2)/(&*[1-x^j: j in [1..2*m]])^3 )); // G. C. Greubel, Dec 06 2018
(Sage)
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(50)
s = (1-x)^2 * (1-x^2) / prod(1-x^j for j in (1..60))^3
s.coefficients()
# G. C. Greubel, Dec 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
G.f. corrected by Sean A. Irvine, Oct 19 2011
G.f. corrected by Joerg Arndt, May 01 2013
Prepended a(0)=1, added more terms, Joerg Arndt, May 01 2013
STATUS
approved