[go: up one dir, main page]

login
A000192
Generalized Euler numbers c(6,n).
(Formerly M2167 N0865)
9
2, 46, 7970, 3487246, 2849229890, 3741386059246, 7205584123783010, 19133892392367261646, 67000387673723462963330, 299131045427247559446422446, 1658470810032820740402966226850, 11179247066648898992009055586869646, 90035623994788132387893239340761189570
OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Euler Number.
FORMULA
E.g.f.: 2*cos(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n)!*[x^(2*n)](sec(6*x)*(cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(6*n + 5/2) * 3^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022
MAPLE
egf := sec(6*x)*(cos(x) + cos(5*x)): ser := series(egf, x, 24):
seq((2*n)!*coeff(ser, x, 2*n), n = 0..10); # Peter Luschny, Nov 21 2021
MATHEMATICA
L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; c[ a_, n_, t_:10000 ] := (2n)!/Sqrt[ a ](2a/Pi)^(2n+1)L[ a, 2n+1, t ] (* Eric W. Weisstein, Aug 30 2001 *)
PROG
(Sage)
t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
f = 2 * cos(3 * t) / (2 * cos(4 * t) - 1)
f.egf_to_ogf().list()[::2] # F. Chapoton, Oct 06 2020
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein, Aug 30 2001
STATUS
approved