[go: up one dir, main page]

login
A000190
Number of solutions to x^4 == 0 (mod n).
15
1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 16, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3
OFFSET
1,4
COMMENTS
Shadow transform of fourth powers A000583. - Michel Marcus, Jun 06 2013
LINKS
Lorenz Halbeisen, A number-theoretic conjecture and its implication for set theory, Acta Math. Univ. Comenianae 74(2) (2005), 243-254.
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999), 138-150.
OEIS Wiki, Shadow transform.
N. J. A. Sloane, Transforms.
FORMULA
Multiplicative with a(p^e) = p^[3e/4]. - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(4*s-3) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) + 1/p^(3*s-2)). - Amiram Eldar, Dec 18 2023
MATHEMATICA
Array[ Function[ n, Count[ Array[ PowerMod[ #, 4, n ]&, n, 0 ], 0 ] ], 100 ]
f[p_, e_] := p^Floor[3*e/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], f[i, 1]^(3*f[i, 2]\4)) \\ Charles R Greathouse IV, Jun 07 2013
CROSSREFS
Cf. A000583.
Sequence in context: A104445 A359762 A000189 * A348037 A003557 A073752
KEYWORD
nonn,mult,easy
STATUS
approved